首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   5篇
  国内免费   1篇
测绘学   1篇
地球物理   79篇
地质学   4篇
海洋学   24篇
综合类   1篇
自然地理   14篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   6篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   18篇
  2012年   2篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   7篇
  2007年   5篇
  2006年   8篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2000年   4篇
  1999年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1981年   1篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
1.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   
2.
The influence of emergent and submerged macrophytes on flow velocity and turbulence production is demonstrated in a 140 m reach of the River Blackwater in Farnborough, Hampshire, UK. Macrophyte growth occurs in patches and is dominated by Sparganium erectum and Sparganium emersum. In May 2001, patches of S. erectum were already established and occupied 18% of the channel area. The flow adjusted to these (predominantly lateral) patches by being channelled through a narrower cross‐section. The measured velocity profiles showed a logarithmic form, with deviations attributable to topographic control. The channel bed was the main source of turbulence. In September 2001, in‐stream macrophytes occupied 27% of the channel, and overhanging bank vegetation affected 32% of the area. Overall flow resistance, described by Manning's n, showed a threefold increase that could be attributed to the growth of S. emersum in the middle of the channel. Velocity profiles showed different characteristic forms depending on their position relative to plant stems and leaves. The overall velocity field had a three‐dimensional structure. Turbulence intensities were generally higher and turbulence profiles tended to mirror the velocity profiles. Evidence for the generation of coherent eddies was provided by ratios of the root mean square velocities. Spectral analysis identified deviations from the Kolmogorov ?5/3 power law and provided statistical evidence for a spectral short‐cut, indicative of additional turbulence production. This was most marked for the submerged vegetation and, in some instances, the overhanging bank vegetation. The long strap‐like leaves of S. emersum being aligned approximately parallel to the flow and the highly variable velocity field created by the patch arrangement of macrophytes suggest that the dominant mechanism for turbulence production is vortex shedding along shear zones. Wake production around individual stems of S. emersum close to the bed may also be important locally. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
3.
One of the most serious problems caused by eutrophication of shallow lakes is the disappearance of submerged macrophytes and the switch to a turbid, phytoplankton-dominated state. The reduction of external nutrient loads often does not result in a change back to the macrophyte-dominated state because stabilising mechanisms that cause resilience may delay a response. Additional internal lake restoration measures may therefore be needed to decrease the concentration of total phosphorus and increase water clarity. The re-establishment of submerged macrophytes required for a long-term stability of clear water conditions, however, may still fail, or mass developments of tall-growing species may cause nuisance for recreational use. Both cases are often not taken into account when restoration measures are planned in Germany, and existing schemes to reduce eutrophication consider the topic inadequately. Here we develop a step-by-step guideline to assess the chances of submerged macrophyte re-establishment in shallow lakes. We reviewed and rated the existing literature and case studies with special regard on (1) the impact of different internal lake restoration methods on the development of submerged macrophytes, (2) methods for the assessment of natural re-establishment, (3) requirements and methods for artificial support of submerged macrophyte development and (4) management options of macrophyte species diversity and abundance in Germany. This guideline is intended to help lake managers aiming to restore shallow lakes in Germany to critically asses and predict the potential development of submerged vegetation, taking into account the complex factors and interrelations that determine their occurrence, abundance and diversity.  相似文献   
4.
Julian C. Green 《水文研究》2005,19(6):1245-1259
Aquatic macrophytes are often the dominant factor influencing flow conditions within the channels they occupy. Existing knowledge of how stream plants affect the flow is outlined, and the different scales at which vegetation resistance operates are proposed. Resistance is shown to be a function of the size of the plants, their structural properties, location in the channel, and the local flow conditions. Current models to calculate this composite resistance effect are assessed in the light of theoretical considerations of the nature of vegetation resistance. New theory is also presented, which demonstrates the non‐linear relationship between channel resistance and the proportion of the channel occupied by vegetation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
5.
The grazing turbinid gastropod Lunella smaragda was sampled regularly over 3.5 y from precise sites of different microtopography and height on the platform shore at Goat Island Beach near Leigh, Northland, New Zealand. Growth is linear for over 3 y, and the year‐classes distinct. The position of the different size‐classes is related to both the shelter afforded by the microtopography, and to the height on the shore. The populations in the mid‐eulittoral turf flats, low eulittoral bare rock areas, and the sublittoral fringe are distinct, and there is a general movement down the shore with age and size. Wave action apparently dislodges the animals from higher areas when they grow to a critical size and transports them to sites lower on the shore, where wave disturbance is less. Field experiments with marked animals and laboratory studies with a wave tank confirm that the wave‐effected distribution is size related. However measurements showed that the ratio of foot attachment area to the shell area presented to the wave does not vary with animal size. The possible benefits of wave dislodgment and wave‐effected distribution are considered.  相似文献   
6.
Abstract

Flood forecasting is of prime importance when it comes to reducing the possible number of lives lost to storm-induced floods. Because rainfall-runoff models are far from being perfect, hydrologists need to continuously update outputs from the rainfall-runoff model they use, in order to adapt to the actual emergency situation. This paper introduces a new updating procedure that can be combined with conceptual rainfall-runoff models for flood forecasting purposes. Conceptual models are highly nonlinear and cannot easily accommodate theoretically optimal methods such as Kalman filtering. Most methods developed so far mainly update the states of the system, i.e. the contents of the reservoirs involved in the rainfall-runoff model. The new parameter updating method proves to be superior to a standard error correction method on four watersheds whose floods can cause damage to the greater Paris area. Moreover, further developments of the approach are possible, especially along the idea of combining parameter updating with assimilation of additional data such as soil moisture data from field measurements and/or from remote sensing.  相似文献   
7.
The underwater light regime of a Mediterranean coastal lagoon (Albufera des Grau, Balearic Islands) was studied during four years in order to characterise the spatial and temporal variations in the light attenuation coefficient (K) and to assess the relative contribution of the different water components to total light attenuation.  相似文献   
8.
Spatial variability of sediment and diatom deposition was assessed in a small monomictic, eutrophic lake in Northern Ireland (Lough Augher, Co. Tyrone) using measurements from 17 sediment cores. Loss-onignition profiles in water depths >6 m showed good repeatability, while littoral cores were more variable with localised profiles. Dry mass accumulation rates, derived by biostratigraphic correlation to a 210Pb dated master core, were variable and not correlated with water depth. Basin mean dry mass accumulation rate was 0.068 g cm-2 yr-1 (range 0.036–0.09) prior to 1900, and 0.19 g cm-2 yr-1 (range 0.11–0.3) after 1974. Post-1940 cumulative fluxes were estimated for dry mass (range 3.49–916 g cm-2) and diatoms (range 16.9–113.8×107 frustules cm-2). Cumulative dry mass was inversely correlated (r=–0.64) with distance from the inflow, indicating its localised influence. No variable was correlated with water depth except frustules of planktonic diatoms (r=0.66). However, high cumulative fluxes of diatoms and dry mass away from the inflow suggest that the expansion of the littoral macrophyte community may be responsible for decreased resuspension in shallow water, and together with increased sediment trapping, has enhanced sediment accumulation in shallow water over recent time periods.  相似文献   
9.
湖泊生态恢复的关键因子分析   总被引:2,自引:0,他引:2  
中国是一个多湖泊的国家。由于经济快速发展及湖泊资源不合理的开发利用,中国湖泊的污染问题和生态系统退化相当普遍。特别是由于氮、磷等营养元素的富集造成的水体富营养化,导致蓝藻水华频繁发生,甚至出现了饮用水危机事件。由于缺乏基础理论的指导,中国湖泊富营养化治理曾经走过弯路。在没有实现控源截污的条件下,片面强调生态恢复来净化湖泊水环境,一度成为富营养化湖泊治理的主流思想。实际上,湖泊生态恢复是有条件的,而对这些条件的诊断和分析是开展湖泊生态恢复的前提和基础。通过对太湖水生植物分布及其影响因子分析,确定沉水植物恢复的核心条件是水下光照条件。水下光照条件受富营养水平、悬浮物浓度与水深等因子的影响。只有当一个水域的真光层深度接近水深的情况(比值>0.8),恢复水生植物才有可能。改善水下光照条件,包括降低水深,提高透明度,消除风浪等措施,实际上,都是增加真光层深度与水深的比值。在上述生态恢复条件不具备的情况下,湖泊治理与恢复的工作更多地应该聚焦在控源截污方面。这对中国湖泊污染治理与生态恢复具有普遍的意义。  相似文献   
10.
Abstract

Stomach contents of Gobiomorphus cotidianus,Retropinna retropinna, Gambusia affinis, and Anguilla australis were compared between two shallow lakes in the lower Waikato River basin, to examine the relationship between turbidity and diet. Lake Waahi and the south arm of Lake Whangape had been turbid (20–40 g suspended solids (SS) m?3) and devoid of submerged macrophytes since the late 1970s and early 1980s, respectively. The main basin of Lake Whangape had been generally clearer (5 g SS m?3) with dense beds of submerged macrophytes, but at the time of sampling (1987) water clarity had deteriorated (> c. 10 g SS m3) and submerged macrophytes had declined. The mysid Tenagomysis chiltoni was an important prey for all species of fish from turbid water bodies but was less important in stomachs of fish in the main basin of Lake Whangape. Apparently, mysids were not an important prey in Lake Waahi before it became turbid. Chironomid larvae and pupae dominated the diets of small fish in the main basin of Lake Whangape. Fish and mysids were the most important prey of shortfinned eels in both lakes, with mysids most important in Lake Waahi. High mysid densities in the turbid water bodies provide an alternative food resource apparently compensating for those lost by fish when water clarity declined and submerged macrophytes collapsed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号